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Abstract— This paper proposes a new event-based control
method for nonlinear SISO systems that are input-output
linearizable and have internal dynamics. The main control
objective is disturbance rejection while simultaneously reducing
the feedback communication effort compared to a continuous
control loop. The event-triggered control loop is shown to be
ultimately bounded and, moreover, a bound for the deviation
between this control loop and the continuous reference system is
derived, which depends on the threshold of the event generator.
Hence, by appropriately choosing the event threshold the event-
based controller can be made to mimic the continuous control
with desired accuracy. The novel control approach is evaluated
by its application to a continuous stirred tank reactor.

I. I NTRODUCTION

A. Event-based control

Event-based control is a new control paradigm that aims
at reducing the communication between the sensors, the
controller and the actuators within a control loop by initiating
a communication among these components only after an
event has indicated that the control error exceeds a threshold.
A potential application of this control strategy is in the field
of networked control systems with intent to decrease the
network utilization.

The structure of the event-based control loop that is
investigated in this paper is depicted in Fig. 1. It consists
of the following three components:

• the plant with single inputu(t), single outputy(t), state
x(t) and disturbanced(t),

• the event generator and
• the control input generator, which incorporates the con-

troller.

The solid arrows in Fig. 1 represent a continuous-time
information transfer, whereas the dashed arrow indicates that
this link is only used at the event timestk (k = 0, 1, ...).
The event generator determines these event timestk at
which sensor data and previously processed signals like a
disturbance estimation̂dk is fed back to the control input
generator. The received information is used by the control
input generator in order to update the trajectory of the control
signalu(t) for the time intervalt ∈ [tk, tk+1).

This paper proposes a design method for the event-based
control of nonlinear plants that is based on an input-output
linearization approach. Following the idea of [6], the design
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Fig. 1. Event-based control loop

aim is to make the event-based control loop mimic a contin-
uous state-feedback loop, hereafter referred to as reference
system, with prescribed accuracy. Copies of the reference
system are used for the control input generation and the
event generation. As the linearizing state feedback of the
nonlinear plant is applied, the reference system is linear and
so are the copies used in both generators. However, due to the
disturbanced(t) and the event-based sampling, the generated
control input differs from the linearizing input and the main
analysis problem to be solved in this paper concerns the
question how large the deviation of the event-based version
of the feedback from its continuous counterpart is. An upper
bound of this deviation is derived showing that the proposed
event-based control method reaches the control aim.

B. Literature review

The literature on event-based control is predominantly
focused on linear systems, whereas only a few publications
investigate nonlinear systems. Event-based stabilization of
nonlinear plants is studied in [11] using a Lyapunov-based
technique. The idea of this approach is to approximate the
derivative of the Lyapunov function for the continuously
controlled system by a function of the plant state. The control
input is updated each time this approximation reaches a
nonnegative value. This basic idea has been extended in
many ways, e. g. to distributed event-based control in [12]
and event-based control with delays and data dropouts in
[13].

An event trigger mechanism for the self-triggered stabi-
lization of nonlinear plants is described in [9]. The predeter-
mination of the next event time that has been investigated
in this approach also relies on the knowledge of a Lya-
punov function for the continuously controlled system. This
technique has been refined for homogeneous and polynomial
systems in [1].

Although the nonlinear plant is considered to be undis-
turbed in all mentioned publications the control input update
is indispensable because a zero-order hold (ZOH) was used



as control input generator that keeps the control signal
constant between consecutive events.

[8] extended the work [6] to event-based disturbance
rejection of input-output linearizable systems with relative
degreer = n. This paper develops the control approach
further to systems with internal dynamics wherer ≤ n.
In contrast to the methods published in literature the event
trigger mechanism does not depend on a Lyapunov function
of the continuous closed-loop system. A smart control input
generator is proposed instead of a ZOH, which generates an
exponential control input signal.

C. Outline of the paper

Section II specifies the investigated class of nonlinear
systems, details the control objective and introduces a ref-
erence system with ideal disturbance rejection behavior. A
novel design method for the event generator and control
input generator is proposed in Section III. Section IV proves
the stability of the closed-loop system and analyzes the
frequency of event generations. Section V provides an eval-
uation of the control approach by its simulative application
to a chemical process.

D. Notation

The notation|s| is used to denote the absolute value of
a scalars. ||x(t)|| denotes an arbitrary norm of an element
x ∈ IRn while ||x(t)||

∞
refers to the supremum norm. A

continuous functionα : IR+ → IR+ is said to be of classK
if it is continuous, strictly increasing and satisfiesα(0) = 0
and it is called of classK∞ if it is unbounded. A function
β : IR+ × IR+ → IR+ is called of classKL if β(·, t) ∈ K∞

for eacht andβ(r, t) → 0 as t → ∞.
Given a functionλ(x) and a vector fieldf(x), then the

derivative ofλ alongf (Lie derivative) is defined as

Lfλ(x) =
n
∑

i=1

∂λ

∂xi

fi(x).

The k-th derivative ofλ alongf is denoted byLk
fλ(x) and

satisfies the recursion

Lk
fλ(x) =

∂
(

Lk−1
f λ

)

∂x
f(x)

with L0
fλ(x) = λ(x).

II. PROBLEM STATEMENT

A. Plant and coordinates transformation

The plant is described by the nonlinear input-affine state-
space model

ẋ(t) = fx(x(t)) + gx(x(t))u(t) + dx(t), x(0) = x0 (1)

y(t) = h(x(t)), (2)

wherex ∈ IRn denotes the state vector,u ∈ IR represents
the input andy ∈ IR the output. The disturbance is denoted
by dx ∈ D with D being a compact subset ofIRn that
contains the origin.fx : IRn → IRn andgx : IRn → IRn are

continuous mappings andfx satisfies the relationfx(0) = 0.
The plant statex(t) is assumed to be measurable.

Consider the plant (1) with the output (2) to have a well-
defined relative degreer ≤ n. The mapping

φ(x(t)) =
(

φ1(x(t)) . . . φn(x(t))
)T

(3)

with
φi(x(t)) = Li−1

fx
h(x(t)), i = 1, ..., r

and the remaining functionsφr+1(x(t)), . . . , φn(x(t)) cho-
sen such that

Lgxφi(x(t)) = 0 for all r + 1 ≤ i ≤ n

holds, qualifies as a transformation of the system (1), (2)
into normal form with new coordiatesz(t) = φ(x(t)). After
defining

ξ(t) =
(

z1(t) . . . zr(t)
)T

, η(t) =
(

zr+1(t) . . . zn(t)
)T

,

the application of the transformation (3) to the system (1)
yields the normal form

ξ̇(t) =











z2(t)
...

zr(t)
b(z(t))











+











0
...
0

a(z(t))











u(t) + dξ(t) (4)

η̇(t) = q(z(t)) + dη(t) (5)

with the transformed disturbanced(t) =
(

dT
ξ (t) dT

η (t)
)T

and the mappingq : IRn → IRn−r given by

qi(z(t)) = Lfφi(φ
−1(z(t))) for all r + 1 ≤ i ≤ n.

As proved in [5], such transformation exists for all input-
affine systems (1).

The transformation of the nonlinear system (1) into the
form (4), (5) obviously reveals the separation of the system
into two coupled subsystems, which will subsequently be
referred to asinput-output dynamics (Eq. (4)) andinternal
dynamics (Eq. (5)). The internal dynamics (5) is supposed
to be input-to-state stable (ISS). Thus, there exist functions
θ ∈ KL and γ1, γ2 ∈ K∞, such that the solution to (5) is
bounded by

||η(t)|| ≤ θ(||η(0)|| , t) + γ1(||ξ||∞) + γ2(||dη||
∞
). (6)

B. Control objective

The investigated event-based control scheme aims at dis-
turbance rejection in order to keep the plant statez(t) in
a bounded surrounding of the setpointz (without loss of
generalityz = 0). This control objective is equivalent to the
notion of ultimate boundedness [2], which means that the
relation

z(t) ∈ Ωz ⊂ IRn, ∀t ≥ 0 (7)

holds for an appropriate setΩz satisfyingz ∈ Ωz. From the
objective (7) it follows that the initial statez(0) is required
to be contained in the setΩz.



C. Reference system

This section introduces a continuously controlled reference
system that is deemed to have desired disturbance rejection
behavior. The event-based control loop should mimic this
continuous control loop. For linearizable plants, disturbance
rejection can be accomplished by the linearizing state feed-
back

u(t) =
(

a(z(t))
)

−1 (
−b(z(t))− kTξ(t)

)

. (8)

The application of the control input (8) to the plant (4), (5)
results in the closed-loop system

ξ̇(t) = Aξ(t) + dξ(t), ξ(0) = ξ0 (9)

η̇(t) = q(z(t)) + dη(t), η(0) = η0 (10)

with quadraticr-dimensional matrix

A =











0 1 · · · 0
...

...
.. .

...
0 0 · · · 1

−k1 −k2 · · · −kr











. (11)

In Eq. (11) ki > 0 (i = 1, ..., r) denotes thei-th element
of the static state-feedback gainkT, satisfying stability
and disturbance rejection specifications for the closed-loop
system (9), (10).

Since the reference system (9), (10) is ISS, the plant state
z(t) is bounded by some functionsθr ∈ KL, γr ∈ K∞:

||z(t)|| ≤ θr(||z(0)|| , t) + γr(||d||∞).

Hence, the reference system (9), (10) is ultimately bounded
with

Ωz,r = {z| ||z(t)|| ≤ θr(||z(0)|| , t) + γr(||d||∞)} . (12)

III. N ONLINEAR EVENT-BASED CONTROL

This section proposes a design method for an event-
based feedback that yields a closed-loop system with similar
disturbance rejection behavior as the previously introduced
reference system.

A. Control input generator

The control input generator applies a model of the ref-
erence system (9), (10), for which the state is denoted by
zs(t) =

(

ξTs (t) ηT
s (t)

)T
, to determine the control input

u(t) according to

ξ̇s(t) = Aξs(t) + d̂ξ,k, ξs(t
+
k ) = ξ(tk) (13)

η̇s(t) = q(zs(t)) + d̂η,k, ηs(t
+
k ) = η(tk) (14)

u(t) =
(

a(zs(t))
)

−1 (
−b(zs(t))− kTξs(t)

)

. (15)

Each event timetk the control input generator receives the
current plant statez(tk) and reinitializes the model (13),
(14). The timet+k denotes the instant right after the event has
occurred. Since the event generator has no information about
the disturbanced(t) between consecutive events the input
generation needs to rely on̂dξ,k and d̂η,k which represent
estimates of the disturbancesdξ(t) and dη(t), respectively

for the time intervalt ∈ [tk, tk+1). Note that this control
approach works with an arbitrary disturbance estimation,
including the trivial one (̂dk = 0). An estimation method
that is based on the assumption that the disturbanced(t) is
a piecewise constant vectord has been proposed in [8].

B. Event generator

The event generator indicates event timestk at which a
feedback is necessary. The following explains how these time
instants are determined. Consider the plant (4), (5) with the
control (15)

ξ̇(t) = Aξ(t) + e1µ(z(t), zs(t)) + dξ(t) (16)

η̇(t) = q(z(t)) + dη(t) (17)

with the r-dimensional vectore1 =
(

0 . . . 0 1
)T

and

µ(z(t), zs(t)) = β(z(t), zs(t)) + kTα(z(t), zs(t)) (18)

β(z(t), zs(t)) = b(z(t))− a(z(t))
(

a(zs(t))
)

−1
b(zs(t))

α(z(t), zs(t)) = z(t)− a(z(t))
(

a(zs(t))
)

−1
zs(t).

A comparison of Eq. (16) with the input-output dynamics of
the reference system (9) reveals that the ideal performanceof
the control loop is obtained forµ(z(t), zs(t)) = 0. However,
the fulfillment of this condition would require continuous
state-feedback which is undesired in the event-based control
scheme. Equation (18) can hence only be bounded according
to |µ(z(t), zs(t))| ≤ e with e ∈ IR+ denoting the event
threshold. An event is triggered whenever the relation

|µ(z(t), zs(t))| = e (19)

holds which will subsequently be referred to astrigger
condition.

Note that the control inputu(t), generated according to
Eq. (15) is linearizing only if the model statezs(t) and the
plant statez(t) coincide. Otherwise the signalu(t) deviates
from the linearizing input

ulin(t) =
(

a(z(t))
)

−1 (
b(z(t))− kTξ(t)

)

and the deviation error defined asu∆(t) = u(t)− ulin(t) is
given by

u∆(t) =
(

a(z(t))
)

−1
µ(z(t), zs(t)).

The last equation shows that the event function (18) cor-
relates with deviation erroru∆(t) of the input. This result
can be used to specify the event thresholde. It limits the
deviation error since after each eventµ(z(t+k ), zs(t

+
k )) = 0

holds due to the reinitialization.

C. Closed-loop system

In summary, the event based control loop consists of
• the plant (4), (5),
• the control input generator (13)–(15) and
• the event generator which triggers an event if the

condition (19) is satisfied.
The generated event marks the timetk at which the feedback
is closed and the informationz(tk), d̂k is communicated
from the event generator to the control input generator.



IV. A NALYSIS OF THE CLOSED-LOOP SYSTEM

A. Comparison of the event-based control loop and the
reference system

This section shows that the difference between the be-
havior of the event-based control loop (16), (17) and of the
reference system (9), (10) which is subsequently represented
by the model

ξ̇r(t) = Aξr(t) + dξ(t) (20)

η̇r(t) = q(zr(t)) + dη(t) (21)

with statezr(t) =
(

ξTr (t) ηT
r

)T
is bounded from above by

some bound that depends on the event thresholde. Let

δξ(t) = ξ(t)− ξr(t) (22)

δη(t) = η(t)− ηr(t) (23)

be the difference between the behavior of the event-based
control system (16), (17) and the reference system (20), (21).

Theorem 1: The difference between the reference system
(20), (21) and the event-based control loop (16), (17) is
bounded from above by

∣

∣

∣

∣

∣

∣

∣

∣

(

δξ(t)
δη(t)

)∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ δmax = max {δξmax, δηmax} (24)

with

δξmax = e

∫

∞

0

∣

∣

∣

∣

∣

∣eAτe1

∣

∣

∣

∣

∣

∣

∞

dτ,

δηmax = 2
(

θ(||η(0)|| , t) + γ2(||dη||
∞
)
)

+ γ1(||ξ||∞) + γ1(||ξr||∞).

Proof: Equations (22), (23) are successively investigated
with respect to the boundedness ofδξ andδη, beginning with
the difference (23) of the internal dynamics.

Recall that by assumption the boundedness of the internal
dynamics is a property of the uncontrolled system according
to (6). Since both the internal dynamics of the reference
system (21) and of the event-based control loop (17) are
ISS, their difference (23) is ISS as well and bounded by

||δη(t)|| ≤ ||η(t)||+ ||ηr(t)|| .

Substitute (6) into this inequality yields

||δη(t)|| ≤ 2
(

θ(||η(0)|| , t) + γ2(||dη||
∞
)
)

+ γ1(||ξ||∞) + γ1(||ξr||∞)

of which the right-hand side is denoted byδηmax.
For the study of the difference behavior of the input-output

dynamics, consider the system

δ̇ξ(t) = Aδξ(t) + e1µ(z(t), zs(t)), δξ(0) = 0 (25)

which follows from (16), (20), (22). The solution to (25) is
given by

δξ(t) =

∫ t

0

eA(t− τ)e1µ(z(τ), zs(τ))dτ.

An upper bound for this expression is obtained by the
following estimation, exploiting the trigger condition (19):

||δξ(t)||
∞

≤

∫ t

0

∣

∣

∣

∣

∣

∣eA(t− τ)e1

∣

∣

∣

∣

∣

∣

∞

|µ(z(τ), zs(τ))| dτ

≤ e

∫

∞

0

∣

∣

∣

∣

∣

∣eAτe1

∣

∣

∣

∣

∣

∣

∞

dτ = δξmax.

Since for the supremum norm
∣

∣

∣

∣

∣

∣

∣

∣

(

δξ(t)
δη(t)

)∣

∣

∣

∣

∣

∣

∣

∣

∞

= max
{

||δξ(t)||
∞

, ||δη(t)||
∞

}

holds, the maximal deviation between the reference system
(20), (21) and the event-based control loop (16), (17) is
bounded according to (24).

The theorem shows that the state of the event-based control
system always remains in a surrounding

z(t) ∈ Ωδ(zr(t)) = {z(t)| ||z(t)− zr(t)||∞ ≤ δmax}

of the reference system that is ultimately bounded. The
event-based control loop is, hence, proved to be ultimately
bounded, as well. Aszr(t) remains in the setΩz,r given by
(12), the statez(t) of the event-based control loop remains
in the set

Ωz = {z| ||z|| ≤ θ(||z0|| , t) + γ(||d||
∞
) + δmax}

which shows the event-based control scheme to meet the
control objective (7). Moreover, the deviation can be adjusted
by appropriately setting the event thresholde.

B. Communication frequency

This section studies the minimal inter-event time

Tmin = argmin
t

min
z(tk)

min
d(t)

s. t. |µ(z(t), zs(t))| = e (26)

on the assumption that the disturbanced(t) is bounded.
Recall that the event function (18) grows due to a deviation
between the plant statez(t) and the model statezs(t). Since
(18) is nonlinear it reaches the event thresholde for different
deviations

z∆(t) =

(

ξ∆(t)
η∆(t)

)

= z(t)− zs(t). (27)

The following investigation is based on the idea that for
the whole setΩz there exists a minimal deviationz∆min

for which the trigger condition (19) is satisfied (Fig. 2). It

z∆1

z∆2

z∆min

| ( , )|=µ z zs e

ζ

Fig. 2. Minimal deviationz∆min that leads to an event generation



exemplifies for a two-dimensional system the line on which
|µ(z, zs)| = e holds plotted againstz∆. Define

ζ := min
z,zs

||z(t)− zs(t)||∞ for all z ∈ Ωz

s. t. |µ(z(t), zs(t))| = e
(28)

and note thatζ depends on the event thresholde. In order
to find the minimal inter-event timeTmin, the system

ξ̇∆(t) = Aξ∆(t) + e1µ(z(t), zs(t)) + dξ∆(t), (29)

η̇∆(t) = q(z(t))− q(zs(t)) + dη∆(t), (30)

ξ∆(t
+
k ) = 0, η∆(t

+
k ) = 0

is investigated, which follows from (13), (14) and (16), (17)
and describes the dynamics of the difference state (27). The
transformed disturbance

d∆(t) =

(

dξ∆(t)
dη∆(t)

)

=

(

dξ(t)− d̂ξ,k

dη(t)− d̂η,k

)

is assumed to be bounded by

||dξ∆(t)|| ≤ dξ∆, ||dη∆(t)|| ≤ dη∆

for all t ≥ 0. In the following the functionq(·) is considered
to be Lipschitz with Lipschitz constantL

||q(z1(t))− q(z2(t))|| ≤ L · ||z1(t)− z2(t)|| .

Theorem 2: The minimal timeTmin between consecutive
events is bounded from belowTmin ≥ min

{

T ξ, T η

}

with
T ξ satisfying

∫ T ξ

0

∣

∣

∣

∣

∣

∣
eAτ

∣

∣

∣

∣

∣

∣

∞

dτ =
ζ

e+ dξ∆
(31)

andT η given by

T η =
ζ

L · ζ + dη∆
. (32)

Proof: With (28) the definition (26) can be restated as

Tmin ≥ argmin
t

min
d∆(t)

s. t. ||z∆(t)||∞ = ζ.

In what follows the problem of finding the minimal inter-
event timeTmin is separated into the tasks of determining
the times

Tξmin = argmin
t

min
dξ∆(t)

s. t. ||ξ∆(t)||∞ = ζ,

Tηmin = argmin
t

min
dη∆(t)

s. t. ||η∆(t)||∞ = ζ (33)

for which the relation

Tmin ≥ min {Tξmin, Tηmin}

holds. The following estimations develop lower boundsT ξ

andT η on the timesTξmin andTηmin, respectively.
To begin with, consider the solution to (29)

ξ∆(t) =

∫ t

tk

eA(t− τ)
(

e1µ(z(τ), zs(τ)) + dξ∆(τ)
)

dτ,

which is bounded by

||ξ∆(t)||∞ ≤

∫ t

0

∣

∣

∣

∣

∣

∣
eAτ

∣

∣

∣

∣

∣

∣

∞

dτ
(

e+ dξ∆
)

.

The minimal time for which the right-hand side of this
inequality is equal to the valueζ is denoted byT ξ and
represents a lower bound onTξmin. This time is obtained as
the upper integral bound for which the relation (31) holds.

According to (33),Tηmin is the minimal time for which
the solution to (30) satisfies the equation

||η∆(t)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

(

q(z(τ))− q(zs(τ)) + dη∆(τ)
)

dτ

∣

∣

∣

∣

∣

∣

∣

∣

= ζ.

An estimation of the left-hand side is obtained as follows:

||η∆(t)|| ≤

∫ t

0

(

||q(z(τ))− q(zs(τ))||+ ||dη∆(τ)||
)

dτ

≤

∫ t

0

(

L · ||z(τ)− zs(τ)||+ dη∆

)

dτ

≤

∫ t

0

(

L · ζ + dη∆

)

dτ. (34)

The time for which (34) equalsζ is denoted byT η and is
given by (32).

V. A PPLICATION EXAMPLE

A. Continuously stirred tank reactor model

The event-based control approach is applied to control
a chemical reaction in a continuous stirred tank reactor
(CSTR), which is illustrated in Fig. 3. The tank is fed by a
constant inflowq of the reactant A with temperatureϑin and
concentrationcin. The temperatureϑc of the cooling jacket
is affected by the cooling poweṙQ that serves as the input
to the system. The liquid in the tank is supposed to be at a
constant level. The reactions inside the liquid are described
by the “van de Vusse” reaction scheme [10]

A → B → C, 2A → D

comprising the reaction of educt A to the desired product
B and the parallel reactions to the undesired byproducts C
and D. The liquid in the tank has the temperatureϑ. The
concentrationcin and the temperatureϑin of the inflow are
subject to uncertainty and the deviations∆cin and∆ϑin from
the nominal values are considered as disturbances of the

A B Cr r

2A Dr

k1 k1

k2

A
q, cin in, ϑ

A B C D, , ,

c cA B, ,ϑ

ϑc

Q

Fig. 3. Continuously stirred tank reactor



TABLE I

PARAMETERS OF THECSTRMODEL (35)

Symbol Value Unit Symbol Value Unit

κ1 30.828 h−1 κ2 86.688 h−1

κ3 0.1 K/kJ κ4 3.522 · 10−4 m3K/kJ
ϑin 104.9 ◦C cin 5.1 · 103 mol/m3

k10 1.287 · 1012 h−1 k20 9.043 · 106 m3/(mol h)
E1 9758.3 K E2 8560.0 K
∆HAB 4.2 kJ/mol ∆HBC -11.0 kJ/mol
∆HAD -41.85 kJ/mol ϑSP 100 ◦C

process. The control aim is to keep the temperatureϑ of
the liquid in the reactor in the setpointϑSP.

A CSTR of this type has been investigated in [4], accord-
ing to which the dynamics of the chemical reaction inside
the tank are described by the state-space model








ċA
ċB
ϑ̇

ϑ̇c









=









−k1(ϑ)cA − k2(ϑ)c
2
A + (cin − cA) q

k1(ϑ)cA − k1(ϑ)cB − cBq

h(cA, cB, ϑ) + (ϑc − ϑ)κ1 + (ϑin − ϑ)q
(ϑ− ϑc)κ2









+
(

0 0 0 κ3

)T
Q̇+

(

∆cinq 0 ∆ϑinq 0
)T

, (35)

wherecA and cB denote the concentrations of the educt A
and the product B, respectively. The temperature dependent
reaction ratesk1(·) andk2(·) are modeled with the Arrhenius
function

ki(ϑ) = ki0 exp

(

−Ei

ϑ+ 273.15

)

, i = 1, 2.

The reaction-induced change in temperatureϑ is described
by

h(cA, cB, ϑ) = −κ4

(

k1(ϑ)
(

cA∆HAB + cB∆HBC

)

+ k2(ϑ)c
2
A∆HAD

)

.

All other symbols and parameters are taken from [3] and [7]
and are summarized in Table I. Taking the temperatureϑ as
the output the system has the relative degreer = 2 and the
model of the CSTR in normal form (4), (5) is obtained by
use of the transformation

z1 = ϑ, z2 = ϑ̇, z3 = cA, z4 = cB

with ξ =
(

z1 z2
)T

andη =
(

z3 z4
)T

.

B. Event-based control of the reactor temperature

The reference system (9), (10) with state-feedback gain
kT =

(

18 9
)

is defined to have satisfactory disturbance
rejection behavior. This controller is, hence, applied in the
control input generator and event generator, as well.

The following analysis investigates the event-based con-
trolled system subject to a piecewise constant disturbance
d(t). To begin with, the event threshold is set toe = 2 ·104.
The simulation results for this setting are illustrated in Fig. 4.
The first two subplots show the disturbances as dashed lines
and the respective estimation derived with the method given
in [8] as black solid lines. Subplots three and four depict the

-1
0
1
2
3

0

100

200

96
100
104
108

92
96

100
104

0 50 100 150 200

ev
en

ts
ϑ

c
[°

C
]

ϑ
[°

C
]
∆

c i
n

m
o
l

m
3

[

[

time in mint

∆
ϑ

in
[K

]

Fig. 4. Disturbance rejection behavior of the CSTR (e = 2 · 104)

course of the reactor temperatureϑ and of the temperatureϑc

of the cooling jacket. The dashed lines represent the behavior
of the reference system and the solid lines the one of the
event-based controlled system. The last subplot indicatesthe
event times.

At the beginning of the simulation the temperature and
concentration of the inflowq does not deviate from the
nominal values and the reactor temperature hence remains
in the setpoint. At timet = 20 min the change of the
inflow temperature triggers an event. After the disturbance
has been estimated correctly at a second event att = 20.4
min no further feedback is required until the temperature
and concentration changes again att = 60 min. During the
simulation time of200 minutes only seven events, including
the initial one, are generated.

Figure 4 shows the behavior of the event-based controlled
system to deviate noticeably from the one of the reference
system. By decreasing the event threshold toe = 0.6 · 104

the event-based control loop can be made to mimic the
continuously controlled behavior more accurate, as illustrated
in Fig. 5 which shows the systems disturbance rejection
behavior subject to the same disturbance as in the previous
investigation. Note that in this case the same number of
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Fig. 5. Disturbance rejection behavior of the CSTR (e = 0.6 · 104)



events are generated despite a minor event threshold. The
improved approximation of the behavior of the reference sys-
tem comes at the cost of a shrinked time between consecutive
events which is perceptible after each change of disturbance.

VI. CONCLUSION

The paper proposed a new event-based control scheme
for nonlinear, input-output linearizable systems with internal
dynamics. The deviation between the behavior of the event-
based control loop and a continuous state-feedback reference
system with ideal disturbance rejection was shown to be
bounded. This bound can be made arbitrarily small by ap-
propriately decreasing the event threshold. The event-based
control scheme was proved to have a minimal time between
consecutive events. An application example of the event-
based control of the temperature in a continuously stirred
tank reactor showed that the event-based control scheme
works well in the sense that the frequency of feedback
is considerable reduced, while a satisfactory disturbance
rejection behavior is maintained.
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